7.5
Use Armstrong’s axioms to prove the soundness of the pseudotransitivity rule.
Proof using Armstrong’s axioms of the pseudotransitivity rule:
\[ \text{if $\alpha \rightarrow \beta$ and $\gamma\beta \rightarrow \delta$ then $\alpha\gamma \rightarrow \delta$ } \]
Proof:
\[ \alpha \rightarrow \beta \quad \text{given} \\ \alpha\gamma \rightarrow \gamma\beta \quad \text{augmentation rule and set union commutativity} \\ \gamma\beta \rightarrow \delta \quad \text{given} \\ \alpha\gamma \rightarrow \delta \quad \text{transitivity rule} \\ \]